
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 16,461-487 (1993) 

TRANSIENT SIMULATION OF 2D AND 3D STRATIFIED 

THEORY 
AND INTERMITTENT TWO-PHASE FLOWS. PART I: 

RAND1 MOE 
lnslitutl for energiteknikk, PO Box 40, 2007 Kleller, Norway 

A N D  

KJELL H. BENDIKSEN 
Institute of Mathematics, Department of Mechanics, Unioersrtj of Oslo, PO Box 1053, Blindern, Norway 

SUMMARY 

Stratified and intermittent stratified-bubble (slug) flows are complex phenomena, often requiring transient 
2 D  and 3D descriptions. This paper presents the physical basis of a new type of multidimensional two-fluid 
model, particularly suited for transient flow problems. Important constitutive relations for wall shear stress 
and interfacial momentum transfer with necessary assumptions and simplifications are discussed. The 
numerical method is based on an implicit finite difference scheme, solved directly in two steps applying 
a separate equation for the pressure. The model has been verified through extensive comparisons with 
available experimental data as well as through comparisons with other models. 
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1. INTRODUCTION 

Over the last few years, transportation of multiphase flow has become increasingly important to 
economic and efficient offshore production of oil and gas. It is now possible to develop small and 
marginal fields by transporting unprocessed well flow to nearby installations, utilizing the 
existing infrastructure. Main well flow components are oil, gas and water. The high investment 
costs of offshore production facilities for oil and gas significantly narrow the margins of error with 
respect to design and safe and reliable operation of such systems. Consequently, since the 1970s 
the petroleum industry has directed considerable R&D efforts towards improving two-phase 1 D 
design tools. In particular, the need for better experimental verification of closure laws was 
recognized, and large scale high pressure pipeline test facilities were erected, e.g. the Sintef 
Multiphase Flow Laboratory at Tiller, Norway.'~'5~31 One-dimensional simulation tools are 
now available to calculate the pressure drop, liquid contents, flow regimes and temperature 
profiles, e.g. OLGA,l PLAC' and PEPITE.3 Transient situations such as terrain slugging may 
also be investigated using OLGA or PLAC. These models are based on a semi-mechanistic 
approach, critically dependent on empirical correlations describing friction between the phases, 
wall friction and flow regimes. 

Finer details of multiphase flow presently have to be studied through extensive experiments, as 
only in special cases can the multidimensional models be applied with confidence. For two-phase 
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flow, however, at least three general-purpose codes (FLUENT, FLOW-3D and PHOENICS) are 
available, and lots of other, more problem-oriented models, mainly based on the work of 
Patankar and S ~ a l d i n g . ~  These, however, are generally limited to dispersed flows or particle 
tracking. 

For separated or stratified flow, Nichols et ~ 1 . ~  proposed an algorithm to track a free surface or 
an interface between two fluids. This model did not take into account turbulence. Shoham and 
Taite16 and Issa' studied turbulent stratified flow over the cross-section of a pipe, and Akai et a1.' 
and Line et al.,9 among others, investigated planar flow in channels. 

In general, the two-fluid equations in two or three dimensions are solved by iterative proced- 
ures. Several solution algorithms for two-phase flow exist IMF,'" IPSA,' TOFFEA,12 
SIMPLB-2P13 and PTSO-2P.14 These are all based on a sequence of three distinct steps where 

1. the momentum equations for both phases are solved; 
2. a new pressure field is determined; and 
3. the volume fractions of each of the two phases are obtained. 

These methods differ mainly in the ordering of the above sequence, particularly the stage at 
which the volume fraction is determined, as well as the degree of implicit-explicitness to which the 
equations are formulated. 

In the proposed model the general two-fluid equations have been applied, with the assumption 
of a single pressure field. The modelling of constitutive laws at the interface is not general, but 
focused on separate or stratified flows. A basic difference between this model and the other 
existing models is in the solution procedure, aiming, in particular, at, improved predictions of 
transient problems. 

The numerical scheme is based on an extension of the one-dimensional (ID) models of 
Bendiksen et a i . ' ~ ' ~  A 'volume' equation is applied for the pressure, enabling a direct two-step 
solution procedure. First, the pressure and velocities are solved implicitly from the volume and 
momentum equations and then the specific masses are solved from the continuity equations. 
These linearized equation sets are solved directly, applying a Gaussian band solver, avoiding an 
iterative solution procedure. 

2. PHYSICAL TWO-FLUID MODEL 

In the local instantaneous formulations of multiphase flow the domain is described by single- 
phase subsets separated by interfaces. The conservation equations for single-phase flow are 
applied within each subset, and local instantaneous transfer rates of mass, momentum and energy 
are formulated as boundary conditions at the interfaces. 

Local time-averaged formulations may be expressed in two basically different descriptions: 

1. Homogeneous flow models" l8  (diffusion or drift flux models). 
2. Two-fluid models." 2 1  

In the averaging process, important characteristics of the flow fields are lost and must be 
reintroduced into the model through appropriate closure laws. 

2.1. Basic equations 

In an Eulerian approach the time averaged two-fluid model equations for the liquid and gas 
phases ( k  = I ,  9) are usually expressed, see e.g. Vernier and Delhaye" and Ishii" assuming a single 
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(fluctating) time or spatial scale, as: 

conservation of mass 

conservation of momentum 

conservation of energy 

and the continuity relation 
c L g + M / + C 1 , = l ,  (4) 

where all field variables are understood to be time-averaged quantities. Important exceptions 
requiring several time scales, include stratified wavy flows and heat transfer in dispersed bubbly 
flows. u k  denotes the velocity, P k  the pressure, p k  the density, ek the internal energy, r k  the viscous 
shear tensor, r ; f  the turbulent flux, qk the heat flux, q: the turbulent heat flux, @ k  the stress tensor, 
g the acceleration due to gravity and a k  the volume fraction of phase k .  The terms r k ,  M k  and 
E K  represent interfacial mass transfers due to phase change, interfacial momentum transfer and 
total energy transfer through interfaces, respectively. 

Jump conditions. Standard time-averaged jump conditions for mass and momentum are 
applied, based on those of Ishii." Conservation of mass across an interface i$ expressed as 

r,+ rf = rs. (5 )  

Assuming ideal massless interfaces of infinitesimal thickness, Ts = 0, as well as IY, = 0 in (4). 
Similarly, the momentum balance at the interface must satisfy 

M, + M /  = M,, (6) 
where the momentum transfer at the interface for each phase, M k r  to a first approximation may be 
expressed as 

Mk=M:+M~+PkiVC(k--kivC(k-T~iVC(k. (7) 
The first term on the right-hand side represents the momentum transfer due to mass transfer, and 
the second term represents the skin drag force and a possible normal component of the 
momentum transfer due to pressure discontinuity between the bulk phase and the interface 
( P k i - P k # O ) .  The variables T k i  and T : ~  denote the viscous and turbulent shear stresses at the 
interface. 

A possible interfacial momentum source may arise due to surface tension effects: 
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The last term incorporates the effect of a possible change in the mean curvature. Effects due to 
changes in the surface tension gradient are neglected. 

Finally, the energy balance at the interface may be expressed as 

E,+ E,a=E,. (9) 

The total energy transfer condition on the macroscopic scale, imposing similar approximations as 
for momentum transfer, can be expressed as follows: 

The first term on the right-hand side represents energy transfer due to mass transfer, W;f ,  is the 
work due to fluctuations in drag forces and q t  is the average heat transfer per interfacial area 
(energy gain), where 1/L ,  is the total area concentration. 

The mixture energy sourcc is represented, imposing similar assumptions as for the mixture 
momentum source as 

rs aa, 
E , = 2  - -+ E :. 

R I ,  at 

2.2. Closure relations and sirnplijications 

As a first approximation, focusing on detailed modelling of the flow structure rather than mass 
transfer, the energy equation has been omitted and a constant temperature field applied through- 
out. The present version also neglects mass transfer between the phases (rk =O). This is consistent 
with the assumption of a constant temperature field in time. The actual pressure differences are 
small for the type of stratified problems to be investigated, and the composition of the fluid is 
assumed to be constant. 

The original model considers four pressures, one for each phase ( P k ) ,  and the pressures on each 
side of the interface ( P k , ) .  

Under the above assumptions, neglecting surface tension, as shown by Ishii," there is no 
pressure discontinuity across the interfaces, and a common pressure field may be applied: 
P = PI  = P g  = PI. 

Flow regime description. Multiphase flow, in general, is a very complicated phenomenon. It is 
conveniently classified into flow regimes which may be further grouped into two main types: 

1. Dispersed flow (particles, bubbles or droplets). 
2. Separated flow (stratified, annular or elongated bubbles). 

More complex flow regimes often occur as combinations of these, such as stratified and annular 
flows with entrainment, and slug flow. 

Dispersed flow regimes have been quite extensively studied recently using two- and three- 
dimensional models by several workers, including Johansen" and E l l~ l l . ' ~  

The problem of closure in turbulent stratified flow has been investigated, among others, by 
Shoham and Taitel,' Issa,' Akai et ~ 1 . ~  and Line et aL9 The first two of these modelled the 
cross-section of a stratified pipe flow using a bipolar co-ordinate frame. This system enables the 
computational mesh to be fitted to the wall of the pipe and to the rectilinear interface simultan- 
eously (tracking the interface). A single-phase turbulence model can be used within each phase. A t  
the interface, boundary conditions can be applied directly. On the other hand, the works of Akai 
et aL8 and Line p t  d 9  are confined to planar flow, where also the interfacial conditions can be 
applied directly to the interface. 
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The present work is focused on problems related to separated flows, either stratified or 

Interfacial shear stress modelling. In time averaging the equations, information about the 
microscopic structure of the flow is lost. Relevant examples are fluctuations at the interfaces and 
detailed two-phase flow patterns. 

Imposing the above assumptions, the jump conditions for the momentum balance reduce to the 
skin drag force, only: 

elongated bubble flow. 

Two basically different approaches to interfacial momentum transfer are possible. Firstly, 
a no-slip condition may be imposed at the interface. This normally implies the use of boundary 
layer velocity functions and asymptotic matching, and becomes extremely difficult in the presence 
of waves. 

In an alternative simpler approach applied for wavy surfaces, interfacial friction is modelled 
through an extension of the method applied in one-dimensional m0de1s.l~ Slip between the 
phases is allowed, and correct velocity profiles far from the interface must be obtained by proper 
choice of coefficients. 

Assuming the drag force to be proportional to the velocity difference squared between the 
phases, this forcc can be expressed in Cartesian co-ordinates as 

where 

u, = uf - ug,  

vr=  o/ - vg. 

The interfacial perimeter, Si, denotes the area of the interface and A is the volume of the actual 
flowfield. Although a simplification, the drag force (1 3) is quite general, and incorporates a variety 
of different physical interfacial conditions. Three different approaches regarding the interfacial 
friction factor have been investigated: 

No interaction between the phases: 
I"; ,  i 'Z0.  

This gives an inviscid (free-slip) boundary condition at the interface for elongated bubble 
flows at low (atmospheric) pressure. It, however, leads to a numerically unstable solution. 
A very strong coupling in the main (axial) flow direction and no interaction in the transverse 
direction: 

This is, in principle, an unphysical boundary condition at the interface, but will nevertheless 
be shown to be practically applicable for many flow types, and to have clear numerical 
advantages. 
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3. Several other types of interfacial friction factors ( A i )  have been investigated. A modification 
of the Wallis3' formula, 

A? =A: =0.02(1+ 75h/) ,  (17) 
has been found to describe stratified or annular flows quite well. 

tensor for laminar flow is normally expressed as for single-phase flow: 
Shear stress modelling. On the basis of the assumption of Newtonian fluids, the average stress 

T k  = p k ( v u k  f vu:)- [ ( 3  p k  - 2 k ) v  ' u f 3 ]  9 (18) 

where p k  and jwk are the viscosity and the bulk viscosity of phase k. 3 is the unit tensor, and all 
quantities are time-averaged. 

In turbulent flow, neglecting possible effects due to interface fluctuations, the Reynolds stresses 
may be expressed as 

(19) 

where ub represents the local velocity fluctuations of phase k. 
For single-phase flow, the Boussinesq approach is applied to model turbulence. Average 

turbulent shear stresses are estimated as the product of the mean velocity gradient and a 'turbu- 
lent viscosity', pT which is dependent on the flow field, 

T 
T k  =- P k  U b U b ,  

- P k U ; U ;  = p k p l [  v u k  + vu: - 3  (v * u k 3 ) ] .  (20) 
For multiphase or two-phase flow this method cannot be adopted without further justification, as 
the macroscopic averaged equations contain interfaces which are no longer described separately, 
but through the volume fractions (ak).  The problem of turbulence in dispersed flow has been 
considered by several authors. Normally, it is accounted for in the continuous phase through 
a modified mixing length, a k--E or a full Reynold stress model. The thesis by E l l ~ 1 1 ~ ~  provides 
a recent overview of the problem. 

In our proposed model the Boussinesq approach to turbulence has been applied for each 

(21) 
phase k T 

f l k ,  eff = p k  + p k .  

The turbulent eddy viscosity ( p f )  will display spatial variations for each phase and will also be 
influenced by the interface. For the flow probems studied in this work, the average flow 
parameters are not expected to be particularly sensitive to turbulent effects. Thus, the simple 
Prandtl mixing-length hypothesis has been applied as a first approach: 

The formula of Nikuradse for single-phase flow, as described by Launder and SpaldingZ6 is used 
for the mixing length: 

where H denotes channel height or pipe diameter. 

of the turbulent viscosity: 
Equations (22) and (23) have been used in the proposed model with a straightforward extension 
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Equation o f  state. The density of each phase is a function of pressure and temperature: 

P k = P k ( P *  T ) .  
A simple relation including compressibility is applied in the model: 

2.3. Proposed two-Juid model 

Applying the above simplifications gives the following set of basic equations for each phase k: 

conservution of mass 

a 
- ( X k  P k )  f v . ( X k p k  uk) = 0, ?t 

conservation of momentum 

and the volume continuity relation 

a,+a,= 1 .  (29) 

The pressure equation. The tight coupling between pressure and velocities, in general, requires 
a simultaneous or iterative solution of the mass and momentum conservation equations. This, 
however, leads to rigid and time-consuming numerical procedures. An efficient and numerically 
robust solution of phase velocities and pressure is obtained by combining the two mass equations 
into a 'volume' equation, as proposed by Bendiksen et ul.l for ID models: 

xg  dp, a, d p ,  a p  1 1 +- - -=-- v .  (agpgug)-- V.(a,p,u,). ( G T  pf 2p 1 21 pg Pr 

2.4. Boundary and initial conditions 

As stated, the proposed model is primarily intended for separated channel or pipe flow 
problems. The relevant boundary conditions along a wall will either be no-slip or free-slip (no 
friction at the wall). 

At the inlet of a pipe or channel the velocities and volume fractions of each phase are specified. 
At the outlet a reference pressure and the volume fractions of the phascs are specified. Applying 
these, a hydrostatic pressure profile over the pipe/channel height is calculated, and used as 
outlet-pressure-type boundary condition. 

In the case of a closed box or pipe, the inlet velocities are set to zero, and a zero-velocity-type 
boundary condition is also imposed at the outlet. 

As this is a transient model, start conditions must always be specified. Required conditions 
include volume fractions of the two phases over the entire flow domain and velocity fields set 
equal to the inlet conditions. The pressure field is calculated according to hydrostatic conditions. 

Further details are presented in Section 3.3. 



468 R. MOE AND K. H. BENDIKSEN 

3. NUMERICAL METHOD 

3.1. Solution procedure 

The numerical solution procedure is based on a first-order semi-implicit finite difference 
scheme. A staggered mesh or Arakawa C-grid has been applied. This type of grid consists of cells 
where the velocities are defined on the boundaries and the pressures and specific masses are 
defined inside the volumes; see Figure 1. Expressing equations (1)-(4) in a conservative form, this 
scheme is volume- and mass-conserving if the equations were solved fully implicit. The solution of 
specific masses is decoupled from that of pressure and velocities. Thus, both mass and volume 
conservation may not be ensured. As described later, however, a correction has been imple- 
mented, giving both a mass- and volume-conserving scheme. 

For clarity, we limit ourselves to the two-dimensional case. A three-dimensional model based 
on the same numerical methods is, however, operational and is now being tested out. In what 
follows, the indices j denote the x-direction, i the y-direction and n the time. Each discrete step is 
defined as follows: 

Axj=xj+l-xj, j =  1, J ,  (31) 

Ayi =yi + 1 -yi, i = 1, I ,  (32) 

t", n=O, T. (33) Atilt'- n + l -  - t  

The set of equations (60) (62) is expressed in a mass-conserving form. An implicit solution of all 
variables in time implies an iterative method, or a stepwise solution of masses and velocities, 
separately. The equations have to be 'linearized' with respect to the product terms, e.g. fluxes, 
where 'old' masses from the previous time are used. 

The applied semi-implicit method results in a split solution procedure at each time step. The 
required flow parameters and coefficients are updated based on the state vector (velocities, etc.) 
from the last time step. Velocities and pressures are then calculated from the momentum 
equations and the 'volume' equation, using specific masses and volume fractions from the 
previous time step. Finally, specific masses and volume fractions are calculated, based on updated 
densities and derivatives. 
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Figure 1. Finite difference staggered mesh scheme 
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Under the assumption of no interphasial mass transfer, the mass equations are decoupled, and 
may be solved separately. When specific masses and densities are known, the volume fractions 
can be obtained directly from the definition (mk = a k p k ) .  This set of equations is, however, 
over-determined, as the volume relation (a, + 0 1 ~  = 1 )  also applies. The solution method may, thus, 
give rise to an error in the specific volume, and an iterative volumetric correction procedure has 
to be included at each time step. 

3.2. Finite difference equations 

Time derivatives are generally defined as 

and spatial derivatives in the x- and y-dimension are defined as 

1 
Ax 

(6,F ") . . = (FY+ 1, i - F 7.  i ) .  3.1 

1 
(35) 

( 6 , F " ) .  .=:(Fi",i+l-FE'.i), 
Ayi 

where F 7 , i  denotes any variable. Definitions (34)--(35) apply to each phase k as well. For product 
terms, the derivatives with respect to time and the x-co-ordinate become 

- - 

(36) 
1 -  

Al 
(6,m;u;+ l ) j ,  = - [(m;u;+ ) j ,  - ( r n t ~ ; ) ~ ,  i ] ,  

(37) n + t  up 1 
Ax 

[6x(m;u;+')UP]'  '=-- [ (miu;+')yy1, i - (m;Uk ) j , i ] ?  

where mean and upstream mass fluxes are applied in temporal and spatial terms, respectively, 
according to the following definitions: 
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where it was found critical to apply the mean values of upstream mass flux, defined as follows: 

(mk uk)!, i = [ ( m k  uk):? + (mk u k ) y 3  + 1 + (mk uk)yI1 1 ,  i + (% u k ) y p  1 ,  i + 1 1". (42) 
The basic conservation equations (60)-(63) are discretized according to the above definitions 

and principles. In particular, the acceleration terms in the momentum equations are sensitive with 
respect to numerical stability. Mean masses are always applied, except for the cross terms (uv), 
where average upstream values, as defined by relation (41), are used. In the pressure terms, the 
minimum gas fraction and the maximum liquid fraction are used in the gas and liquid momentum 
equations, respectively. This gives correct results also for cases with sharp interfaces between the 
two phases, as well as improved numerical stability. 

The proposed numerical model then reduces to: 

conseruation of mass 

gas phase 

liquid phase 

n + l  n + l  up n + l  n + l  up 
[ d t m : + ' + a x ( m g  ug ) +6y(mg u g  I j , i = O ,  

[d,m:+ + 6,(rn:+ u;++)"P+ 6,(m:+ v;+ ')"PIj, = 0, 

the pressure equation 

n n + l  up 1 

PP, j, i 
+ F c 6 x ( m i . u P  1 l j , i = o '  

where 

(45) 

(46) 

j-1 i j+l j-1 j+l 

Figure 2. Two different discretizations of flux terms. (left: mean mass flux; right: upstream mass flux) 
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conservation of momentum in y-direction (gas and liquid phase) 

{ 6,mf 2, f + + 6,( (a) 21 f ' 1 )  + 6, (2 2,;2,; + I)} j ,  i 

=min($, j ,  i ,  a:, j, i - 1 { 6 x p n  + ' 1 j, i - { mzg cos CP > j, i + { S,(U;P;, eff6xu;+ ' )j- 1 ,  i }  

(49) 

As shown in Appendix 11, the volumetric error puts additional restrictions on numerical 
accuracy and stability. The first term limits the local pressure changes in a given time step, 
depending upon the compressibility and density of the fluids. Limiting the volumetric error to 

and assuming water as the dominating fluid, the model accepts local pressure transients of 
0 1  bar per time step. 

3.3. Boundary conditions 

By applying a staggered mesh, the boundary conditions have to be imposed according to the 
location of the nodes. The boundary conditions along the walls can either be of a no-slip or 
a free-slip (no friction at the wall) type. Implementation of the boundary condition at the wall in 
the numerical scheme depends on the direction. For no-slip and free-slip conditions, antisymmet- 
ric and symmetric conditions are imposed for the tangential velocities, respectively. The normal 
velocities at the wall are set to zero, as indicated in Figure 3. 

The boundary conditions at the walls are then expressed as follows: 

N 0-sl ip Free-slip 

3.4. Solution matrices 

In the proposed implicit solution procedure the equation systems form three matrix equations. 
The volume and momentum equations with a total of nine equations for each node constitute 
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Pressure, density and 
I I I I void node 

-- . -- . -- 0 -- -- - velocity (us, u,) node 

I 1 I 1 I velocity (vs,vI) node - - .  -- .  -- 0 -- -- 
I I I I 

j = l  

Boundary sections 

............................. ..... 

X 

Figure 3. The numerical grid near the wall 

a large matrix, and each of the two mass equations define separate matrices. As each variable 
couples only to adjacent nodes, a sparse band matrix structure results. 

The momentum and volume matrix equation. The five equations for each grid boundary are 
ordered by starting with the momentum equations for gas and liquid in the x-direction, then the 
pressure equation and the momentum equations for gas and liquid in the y-direction, as indicated 
in Figure4. 

Figure 4. Matrix structure 
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The velocity in the main flow (x-) direction couples to the upstream and downstream velocities 
for the same phase, to the upstream and downstream pressures and the velocities of the same 
phase in the y-direction and to the velocity of the other phase. This gives a theoretical maximum 
of eight couplings. The same applies to the velocities in the transverse direction. The pressure of 
each node connects to the adjacent velocities and pressures, giving a total of nine couplings. 

The equations form a sparse band matrix. For a system containing N nodes along the pipe or 
channel and A4 nodes in the transverse direction, the matrix will have a bandwidth of 10M-3, 
and a length of N(5M-2). 

The applied Gaussian band algorithm is a very time- and space-consuming equation solver. 
The band consists of nine non-zero elements, and to simulate a typical channel, 7-10 nodes have 
been used across the height, giving a bandwidth between 67 and 97 elements. 

Conjugate-gradient-like equation solvers have also been tested by NossenZ9 using incomplete 
LU-factorization (ILU) preconditioning. However, problems with convergence of these methods 
were encountered. This was mainly due to small main diagonal entries in the matrix caused by the 
pressure term in the volume equation. These terms are small, in particular, due to the low 
compressibility of the liquid phase. 

The present 2D version of the model, using a total of 100 nodes in the x-direction and 25 nodes 
in the y-direction requires 25.1 MB of memory. The CPU time for each time step for a case sized 
40 x 22 nodes is 80.5 s on a Hewlett Packard 9000/720 computer. 

4. APPLICATIONS 

The model is designed to cover a wide range of separated flows with volumetric gas fractions from 
0 to 1. Single-phase flow is a special case, where the gas fraction or the liquid hold-up is zero. 
There are no restrictions on the range of fluid properties (density, viscosity or compressibility) 
that can be applied: the model in principle accepts any fluid, gas or liquid. 

4.1. Single-phase flow 

Laminar pow. The simplest test case consists of a horizontal channel applying the free-slip 
boundary condition at the walls. The calculation is initiated with a specified constant velocity 
profile at the inlet and proceeds for a few time steps. The model then gives a steady-state solution 
identical to the initial conditions to at least 5-6 digits. 

P1 

P1 2’a I Lx 
I 4 

Figure 5. Channel flow (upper: free slip at the walls; lower: no slip at the walls) 
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Applying the no-slip boundary conditions at the walls yields the Poiseuille flow. Considering 
first the case of single-phase laminar channel flow (elk= lj, omitting the subscript k, equation (61) 
reduces to 

Applying the no-slip boundary condition at the channel walls 

u = o ,  y = f u ,  (53) 
the familiar analytical solution is obtained as 

3u0 
2u2 

U a = - ( u  - y 2 ) .  (54) 

This solution cannot be directly compared with the numerical solution as the numerical 
scheme uses a different set of boundary conditions, where the velocity node lies half a mesh from 
the wall. By applying the ‘numerical’ boundary conditions 

u(+ u - Ay/2) = u(* u + Ay/2), (55 )  

equation (52) gives 

where uO is the mean velocity. The two analytical solutions (54), (56) are compared with the results 
from the numerical model (unm) in Table I. 

Theoretically, a first-order finite difference scheme shall give exact results for an elliptic 
equation in Cartesian co-ordinates. Our results in Table 1 show that applying the proper 
‘numerical’ boundary conditions, the numerical model confirms this to within the first five digits. 

Similarly, for axisymmetric pipe flow, the equation for the Poiseuille flow becomes 

ap i a  
ax r a,( E) --+-- p-  =o. (57) 

The solution of equation (57) with no-slip boundary condition at the wall is given as 

u, = 2u0 [ 1 - (r/u)’]. ( 5 8 )  

Table 1. Numerical and analytical velocity profiles for 
laminar Poiseuille flow in a channel 

0.025 0.45830 0.48 0.480001 
0.075 1.12500 1.12 1.1 19998 
0.125 1.45833 1 44 1.439995 
0.175 1.45833 1 44 1.439995 
0.225 1.12500 1.12 1 . 1  19998 
0275 0.45830 0.48 0480001 
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Imposing the 'numerical' boundary condition, the solution becomes 

(a' + Ar2 - r 2 ) .  2uo 
a2 + 2Ar2 Ua, = (59) 

The results of the two analytical solutions are compared with the results from the numerical 
model (u,,) in Tables I1 and 111, using five and nine nodes, respectively. 

A first-order Euler finite difference scheme shall give a second-order error dependency on mesh 
size for axisymmetric co-ordinates. 

The numerical results, unm, for both five and nine mesh points compare very well with the 
analytical solutions (with numerical boundary conditions) u,, . The relative error dependency on 
mesh size can be calculated for the radial position 0.225 m (for the examples in Tables I1 and 111), 
and is shown in Figure 6. 

Turbulent pow. For turbulent flow, the velocity profile will be modified. Figure 7(left) shows 
a turbulent velocity profile in channel flow and Figure 7(right) shows a turbulent velocity profile 
in axisymmetric pipe flow (Re  = 70 000 and Re = 35 000, respectively). 

The predicted turbulent velocity profiles give u,,, = 1 . 2 8 ~ ~ ~ ~ ~  (for channel flow), which is 
slightly too high, and u,,, = 1 . 4 5 ~ ~ ~ ~ ~  for axisymmetric pipe flow, which is also too high. No effort 
was made to tune the simple turbulence model applied to get better results for the axisymmetric 
case, as improved models will be incorporated later. 

Table 11. Numerical and analytical velocity profiles for 
Poiseuille flow in a pipe of radius 0.45 m (five mesh points) 

0.045 1.9800 1.9608 1.9650 
0.135 1.8200 1.8039 1.8078 
0.225 1.5000 1.4902 1.4934 
0.3 15 1.0200 1.0196 1.0218 
0.405 0.3800 0.3922 0.3930 

Table 111. Numerical and analytical velocity profiles for 
Poiseuille flow in a pipe of radius 045 m (nine mesh points) 

0.025 
0.075 
0125 
0.175 
0.225 
0.275 
0.325 
0.375 
0.425 

1.9938 
1.9444 
1.8475 
1.6975 
1.5000 
1.253 1 
09568 
0.61 11 
0.2 160 

1.9877 
1-9387 
1.8405 
1.6933 
1.4969 
1.2515 
0.9571 
0.6135 
0.2209 

1.9916 
1.9424 
1.8441 
1.6965 
1.4998 
1.2540 
0.9589 
06147 
0.22 1 2 
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4.2. Two-phase Jow case studies 

Consistence tests. Two sets of test cases have been run to check the symmetry properties of the 
model. First, a square box with sides of 2 2  m, initially filled with 50% of air and water evenly 
distributed within the total volume, was modelled, using 22 mesh points in both directions. 
Free-slip boundary conditions were applied at the walls. As shown in Figure 8, the two phases 
have been effectively separated after 0.8 s real time. 

The second test case was similar to the first one, but tilted 45". Here each box side was 0.7 m, 
and only seven mesh points were used in each direction. A no-slip boundary condition was 
applied at the walls. 

Broken dam problem. A rectangular column of water in hydrostatic equilibrium is confined 
between two vertical walls and a horizontal bottom. The right wall is suddenly removed, and the 
water column starts to collapse under the influence of gravity. The initial water column is 1.0 m 
wide and 2.0 m high. Figure 10 shows the flow configuration. 
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Figure 9. Separation of gas and liquid in a square box tilted 45" to the horizontal 
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Figure 10. Broken dam problem 

Test fluids are water and air with the following properties: 

density of air = 1.205 kg m-3, density of water = 998.0 kg m- ’, 

viscosity of air=141 x IO-’N sm-2,  viscosity of water= 1.01 x N s  m-2, 

at atmospheric conditions. 
The applied grid in the simulation consists of 22 x 40 nodes, uniformly spaced in the x-direction 

and non-uniformly spaced in the y-direction. The smallest Ay (0.05 m) values are located at the 
bottom, where the highest resolution is needed to treat the leading edge properly. A time step of 
0.002 s has been employed for the computation. Interfacial friction factors from equation (16) 
were used for this case. The interface is assumed to be located where the volume fraction is 0.5, as 
suggested by Liu and Spalding.” 

Due to numerical diffusion, the time evolution of the liquid surface proved to be very sensitive 
to the numerical dicretization of convective terms in the momentum equations. Consequently, 
a sensitivity study was performed. Applying the normal interfacial friction factors (16) gives 
a large diffusion of the leading edge, as indicated by Model 1, Figure 11.  Simply omitting the 
convective term 

in equation (61) in cells containing interfaces, only, provides another extreme, limiting numerical 
diffusion, but obviously yielding erroneous results. The numerical diffusion is due to the discretiz- 
ation, yielding unphysically large convective terms near the leading edge. A practical model was 
derived by simply reducing the effect of the convective term for low liquid fractions, multiplying it 
by the volume fraction in the actual cell. The computational results then showed good agreement 
with the experimental results. 

Hirt and Nichols2’ and Liu and Spalding2’ have used another approach to simulate this case. 
These methods are both basically single-phase calculations, with a discontinuity in the fluid 
properties representing the interface. The discontinuity or interface position is followed by 
a ‘conserved scalar’ which, in principle, is zero or one in either domain of fluid. These methods 
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Figure 11. Comparison of the computed 2 with the experimental data of Martin and Moyce” 

avoid numerical diffusion, and reproduce experimental results accurately, but the velocities in 
each computational mesh have to be equal for both phases. 

Collapse of a liquid column. A two-dimensional cavity of side 0-2 m is initially partly filled with 
liquid and gas. Half the volume is occupied by the liquid on the left side of the cavity, and the 
interface is aligned with the vertical. Gravity acts in the negative y-direction. The liquid will move 
from one side to the other over a number of cycles before it comes to rest at the bottom of the 
cavity. 

s. The 
densities of liquid and gas were set equal to 1000 and 1 kg m-3 ,  respectively, and the viscosity of 
liquid was 1 x Pas. 

The interfacial friction factor applied is given by equation (17), since in this case the movement 
of the liquid is of equal importance in both directions. 

Predictions by the proposed model are compared with those of the FLUENT modelz4 in 
Figure 12. In both calculations the interface is taken to be located where the volume fraction is 
0.5. The FLUENT model also applies a full set of two-fluid equations; the solution procedure, 
however, is quite different as this model applies an iterative solution algorithm based on the 
SIMPLE m e t h ~ d . ~  

The results presented in Figure 12 show very similar time development for the two models. 

A uniformly spaced 20 x 20 grid has been employed with a constant time step of 

5. CONCLUSIONS 

A numerical two-fluid model has been presented, focusing on a new direct implicit solution 
method. The numerical solution procedure is based on a first-order semi-implicit finite difference 
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scheme. A staggered mesh or Arakawa C-grid has been applied. The applied method results in 
a split solution procedure at each time step, where phase velocities and pressures are obtained 
first, and then specific masses based on densities are updated with new pressures. The proposed 
scheme is robust, as well as mass, and with a proper correction, also volume conserving. 

Comprehensive tests on simple flow problems have been performed to ensure correct imple- 
mentation of the model and to assess the performance of the numerical scheme. 

The single-phase simulations show excellent agreement with analytical solutions for laminar 
pipe and channel flow. 

The model is designed to cover a wide range of stratified flow problems. Four different types of 
transient two-phase phenomena were simulated. The broken dam and collapsing liquid column 
problems both provide good tests of the numerical method applied. Model predictions compare 
very well with the experimental data, and where available, with other methods (FLUENT). 

The broken dam problem illustrates the importance of the horizontal convective term in the 
momentum equation on numerical diffusion. 

More comprehensive studies of two-phase stratified and slug flow problems will be presented in 
a companion paper. 
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APPENDIX I: THE PROPOSED 2D TWO-FLUID MODEL 

Volume-averaged equations, expressed in 2D Cartesian co-ordinates (Figure 13), are used for 
channel flow. Axisymmetric co-ordinates are used to simulate flow in a pipe, with the x-axis along 
the pipe and the r-axis ( y )  in the radial direction, as indicated in Figure 14. 

Conservation of mass and momentum is then expressed in both frames of reference, as follows: 

conservation of mass 
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i g  
Figure 14. The co-ordinate orientation for channel flow 

conservation of momentum for phase k in the x-direction 

conseruation of momentum for phase k in the y- (or r - )  direction 

(62) 

where pk,eff is the effective viscosity given by (21). 

the pressure equation 

Using x ,  y with r = 1 gives the equations in Cartesian co-ordinates, and using x and y = r gives the 
equations in axisymmetric co-ordinates. 
q denotes the inclination of the pipe or channel relative to the horizontal. The terms F &  and 

Fli describe the interfacial momentum transfer between the two phases, in the x- and y-direction, 
respectively. 
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There are nine independent main variables, ug,  u g ,  u I ,  u f ,  p ,  ug,  a,, p u ,  pe, six conservation equa- 
tions and a volume relation (29). In addition, there are four unknown terms for the inter- 
facial momentum transfer (drag) and turbulent viscosity, which must be specified through 
closure relations, as described in Section 2.2 and chapter 3. 

APPENDIX 11: CALCULATION OF VOLUME FRACTIONS AND THE VOLUMETRIC 
ERROR 

The volume fractions are first obtained from the specific mass relations: 

The volume fractions are then redefined to satisfy the volume relation, tlg = sl, = 1: 
* r n t ! ) '  

B. 1. I 
Q:,:.:= " + I ) '  (n+l)"  

a;,;,;= l-a"+.\. g, J ,  
(45) 

' k , j , i  + " / , j , i  

A volumetric error 

Avol = 1 - (c( g . J . i  (n  t ? ) ' + a(" f 3 j , i  + ? I '  ) (64) 

may then result, due to discrepancies in the discretization of the volume equation in the first step 
of the solution, where both masses and directional indices from the previous time step are used, 
and to the discretization of the mass equations in the second step. By comparing equations 
(43)-(45), the volumetric error can be expressed as follows: 

The volumetric error puts additional restrictions on the numerical accuracy and stability. The 
first term limits the local pressure changes in a given time step, depending upon the compressibil- 
ity and density of the fluids. Limiting the volumetric error to lo-' and assuming water as the 
dominating fluid, the model accepts a local pressure transients of 0.1 bar per time step. 

The next terms pose no further limitations on the maximum time step in the calculations. This 
can be seen as follows: Assuming slowly varying velocities in space, observing that mk/pk 6 1, the 
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remaining parts of (67) reduce to the Courant criterion: 

At<min -,- , 
(A: Auyi) 

where u and u are characteristic phase velocities in the x- and y-direction, respectively. As known, 
this criterion always applies for the implicit numerical scheme. 

APPENDIX 111. NOMENCLATURE 

area 
energy source 
internal energy 
function 
gravity (body force) 
liquid holdup 
channel height 
mixing length 
momentum source 
force due to change in mean curvature 
specific mass, phase k(m, = akpL)  
pressure 
heat flux 
radial co-ordinate 
mean curvature 
Reynolds number 
velocity 
velocity, x-component 
velocity, y-component 
velocity, z-component 
Cartesian co-ordinates 
volume fraction 
mass transfer rate 
inclination 
bulk viscosity, friction factor 
viscosity 
density 
surface tension 
stress tensor 
unity tensor 
total stress tensor 

Subscripts 

g gas phase 
i interface 
i, j directional indices 
k phase 
m mixture 
L liquid phase 
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Superscripts 

n time index 
R radius of curvature 
T turbulent 

fluctuating component 
* transposed (tensor) 
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